Milk's Future: Capturing Value in Genetic Traits

Foods for Health Institute Building the Science, **Technologies and Education to** Guide Diet and Health and Create Value for Agriculture in the 21st Century

Disclosures

Diet & Health - Oops We should be enjoying the best health in history and some are,

.....but most are not

Jaring Timmerman Roger Gentilhomme

The horror of 60 years of Science Funding

To cure the diseases of middle aged rich men

Value of Milk The price of milk as a beverage Sacramento airport: Water \$2.49 Milk \$2.25

Value of Milk? According to price, California farmers lower the value of water by passing it through their cows!

Value?

Lets put that price in context

Value of Milk? Cheaper than Water!

It must be toxic?

Airport reality You are about to be literally tied to a chair for hours:

- Bone turnover
- Muscle atrophy
- Immune Senescence
- Physiological Performance

What would help: MILK!

Human gene variants enabled Lactase Persistence into adulthood

Europe:1 known variant

- Africa: 4 known variants: 3 African, 1 European origin
- Lactase mutation occurred often in human history

The Elephant in the room

Does milk cause heart disease

Elwood et al., 2008

Ischemic Heart Disease

Elwood et al., 2008

Stroke

Elwood et al., 2008

Diabetes

Elwood et al., 2008

Colorectal Cancer

Elwood et al., 2008

Bladder Cancer

Elwood et al., 2008

1.06

Prostate Cancer

Real Value of Milk Individuals who drink milk throughout their lives are: Taller Leaner Stronger Break fewer bones at all ages Live longer

Foods for Health Institute What should we eat What should we grow

Evolutionary Nutrition

What evolved under the Darwinian Pressure to be Nourishing?

Evolution

millions of years ago = mya billions of years ago = bya

Darwin Awards: The willful removal of genetic material

(Aff)

Lactation The Darwinian Engine of Nutrition

Evolving a cost – benefit solution for Health

Milk Genomics Consortium

Coordinating world wide resources to assemble, annotate and validate the subset of mammalian genomes responsible for milk: The Milk Genome

SPLASH! milk science update

Kangaroo Tips for Human Preemies

by Danielle Lemay and Kevin Nicholas in SPLASH! milk science update: October 2013 issue

All of the breakthroughs in milk research, summarized, interpreted and explained

The Thematic principle

Concept: "Evolutionary Nutrition"

S Me

Example: milk, the Rosetta stone of nourishment

Mechanistic targets for health and prevention

Proof of Principle: 1 milk's view of Bacteria

Lactation

The Darwinian Engine of Diet, Health & Sustainability

Functions of Milk? The 3rd most abundant class of biomolecule in human breast milk is un-digestible by humans!

What are they?

Milk Oligosaccharides

Carlito Lebrilla

•World's Leading Analytical GlycoChemist

HMO Structural Diversity

FOS/GOS

Courtesy of Lars Bode

Functions of Milk? The 3rd most abundant class of biomolecule in human breast milk is un-digestible by humans!

Bacteria?

David Mills

Structure, Function and Health Benefits of Food Borne Bacteria

Bifidobacterium Infantis

Tripartite Evolutionary Relationship

Customers?

Premature Infa Necrotizing Enterocolitis

Combination of human milk oligosaccharides plus *Bifidobacterium longum* subsp. *infantis:*

Mark Underwood

Results: microbial colonization

- Restored gut microbiome
- Significantly reduced populations of Enterobacteriaceae and Clostridiaceae
- Lowered Inflammation

Dominate the microbial community in the lower intestine

Regulate activation of innate Immunity

UCDAVIS FOODS FOR HEALTH INSTITUTE

Human Studies > Lactation Study

Guide the development of Intestinal barrier Functions

Fuel the intestine and beyond

Hi-Bif babies: a different "colonic terroir"

Mammals have embraced bacterial transfer

Modern Life has stopped microbial transfer

Grist

Something you already know

5x

4x

5x

ABOUT US TECHNOLOGY NEWS RESOURCES CONTACT

Tim Brown CEO

Establishing, restoring, and maintaining a healthy human gut microbiome

www.evolvebiosystems.com

Introducing Evivo. The first and only baby probiotic of its kind. Evivo contains the good bacteria *B. infantis*, which fully utilizes breast milk to protect baby's gut from potentially harmful bacteria linked to higher risk of colic, eczema, allergies, diabetes, and obesity.

What have we learned: Verenetalone!

Gut Health Across Mammalian Species

Confidential

Not only Babies

By understanding the mechanisms of milk we gain a detailed understanding of diet and health for EVERYONE

Opportunity: BioProfessionals

Our minions!

Need Food!

Business Opportunities

UCD Milk Processing

Daniela Barile Asst Prof FST

- •Pilot-scale filtration from MMS AG Systems
- •Fourier Transform Advanced IR MilkoScope
- Speed vacuum MiVac Quattro ConcentratorIndustrial freeze dryer

Retention Time (min)

Oligosaccharide Biology in Bovine

Opportunity: 'Bugs' of Health

Personal microbiome management: premature infants to weaning from athletes to hospitals

Opportunity: 'Bugs' of Delight From chocolate to coffee, wine to beer, yogurt to cheese, bread

Proof of Principle: 2 milk's view of protein

Infant Digestomics Infant Digestion as a Bioreactor

Sample collection

- Neonatal Infant Care Unit
- Feed milk
- Gastric drop (after 2 h digestion)
 via feeding tubes

Dr. Mark Underwood UC Davis Medical School Department of Pediatrics

Peptides in the stomachs of babies

(Dallas et al., 2014, JN)

What are the peptides? Ask Carlito!

Tandem spectra can be analyzed by hand.

AVADTRDQADGSRASVDSGSSEEQGGSSRA from polymeric immunoglobulin receptor

What does all this tell us

Database of proteins

Database of peptides

Where did the peptides originate? How were they released?

What enzymes can do this?

- Active Enzymes:
- -plasmin
- -elastase
- -cathepsin D
- -glutamyl endopeptidase -proline endopeptidase

All except plasmin showed mRNA expression in milk

Ju	ian
Mec	Irano

Expression values of genes encoding endogenous proteases in milk somatic cells at 15, 90 and 250 days of lactati						
Category	Enzyme	Gene symbol ¹	Day 152	Day 90 ²	Day 25	
Cathepsins	Cathepsin B	CTSB	1062.9	4463.3	6052.5	
	Cathapsin D	CTSD	785.0	4007.6	4645.6	
	Cathapain Z	CTSZ	222.0	1048.3	1034.0	
	Cathepsin H	CTSH	122.9	\$36.0	649.1	
	Cathepsin S	CTSS	89.1	507.2	642.9	
	Cathepsin C	ctsc	69.3	378.1	446.4	
	Cathepsin K	CTSK	82.1	370.5	309.0	
	Cathepsin A	CTSA	86.8	432.5	334.0	
	Cathepsin F	CTSF	22.1	76.2	103.3	
	Cathepsin W	CTSW	16.7	25.3	32.2	
	Cathepsin L2	CTSL2	10.5	12.5	13.0	
	Cathepsin O	CTSO	0.8	3.7	4,4	
	Cathapain L1	CTSLI	0.9	0.8	0.1	
	Cathepsin G	CTSG	0.0	0.0	0.0	
Elestase	Elestere 1	ELAI	0.4	3.2	1.2	
	Elestase 38	ELA38	0.0	0.1	0.1	
Rasminogen pathway	Plasminogen	PLG	0.0	0.0	0.0	
	Urokinase-typeplasminogen activator	PLAU	18.7	216.8	52.2	
	Urokinase receptor	PLAUR	60.4	346.1	91.3	
	Tissue plasminogen activator	PLAT	1.9	4.2	4.8	
	Pleaminopen activator inhibitor	SERVINE1	3.6	79.7	19.5	

(Khaldi et al., 2014, JAFC)

Infant Digestomics Milk is Self-Digesting!

 Detailed milk peptidomics reveal just how much mom's help babies

Innovating at every step from farm to fork

Dairy's future? The cornerstone to personalized health

Recommendations Own Lactation!

Dairy should lead the world in Human milk support

Make Health Measurable

Dairy should lead the world in health diagnostics support

Prepare for Disruption

Dairy should lead the world on data transparency

Future

What will be

What could be

Good Model for Multinational Food Bad Model for Agriculture Horrible Model for Human Health

Health is about the entire diet not just a food

Food is not like drugs! You cannot solve the problems of a bad diet with one food item.

Knowledge Based Diet & Health

What does a knowledge based system look like

Personal

×

227 Collins Street, Melbourne VIC 3000, Australia

Dynamic

Annotated

Value Proposition of Google Maps

Where am I? Where do I want to go? How do I get there?

Health Knowledge

What is my Health Status now? What would I like it to be? How do I get there?

How it works

Annotated Database of Food Chemicals

Interrogated by individual users

Dairy

Why would Dairy want to move to a Knowledge-based, Dietcentric Food System?

National Academy of Science, Institute of Medicine's History!!

What COULD the future be

Global Aspirational

GOALS **Autoimmunity:** allergy, eczema, psoriasis, asthma, diabetes, arthritis, lupus, MS, IBD, celiac,...

GOALS **Inflammation:** Cardiovascular disease, arthritis, IBD, hepatitis, globmerulonephritis,

GOALS

Metabolic **Control: Obesity**, **Diabeties**, Steatohepatitis,...

Allergy/Atopy

The world is suffering through increasing incidence and severity of autoimmunity

Trends in Prevalence of Asthma By Age, U.S., 1985-1996

Allergy/Atopy

Atopic disease is inexplicably getting more frequent and severe

> Raw milk is tantalizingly protective

Immune Defense Is it possible to enhance immune surveillance yet inhibit inflammation?

Breast milk supports the developing immune system <u>and</u> inhibits inflammation

Inflammation

Inflammation drives all noncommunicable degenerative diseases

Intestinal Microbiota

Pathogenic bacteria make up a finite proportion of the intestinal microbiota.

Their activation and proliferation promotes inflammatory activation of intestinal cells

Commensal bacteria displace pathogens, secrete antimicrobial agents, and guide immune and epithelial function and development in the host

Barrier Integrity

The integrity of cell junctions in the gut is critical to maintaining a barrier to the translocation of biomolecules into circulation

Migration of bacterial products through the epithelial barrier promotes inflammatory activation of circulating cells

Commensal bacteria and ingested milk components restore barrier integrity

Adipose Dysfunction

'Excess' adipose stimulates resident macrophages that recruit a net inflammatory distribution of immune cells into the tissue.

Dairy's future? A cornerstone to personalized health

The cow as the center of science and industry in the 21st Century

Thank You